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The solid solution of mercury in palladium. By K. Terapa, Dow Chemical Company, Midland, Michigan,
U.S.A., and F. W. CacrE, Jr., Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S. 4.

(Received 26 June 1961)

During the course of a study of the system Pd-Hg, the
randomly substituted solid solution of mercury in palla-
dium was examined. The early observation of Berzelius
(1813) that the last traces of mercury are quite difficult
to expel from palladium amalgam suggests a solid solu-
tion. In the range from zero to 13-8 at.%, mercury dis-
solves in palladium, with an expansion of the palladium
lattice. Values of the lattice parameter were calculated
from backreflection lines showing resolved Cu K« doublets
(Ax, =1-5405 A, 2,,=1-5443 A) using a North American
Phillips camera with a nominal radius of 5:73 em. The
film was mounted in the unsymmetrical or Straumanis
position so that the effective radius could be determined
for each pattern. The values of the unit cell parameter,
a,, are given in Table 1.

Table 1. Cell edge versus atomic percentage of palladium
wn palladium amalgam

Index 100-0 at.9%, Pd 93-8at.9%, Pd 87-6 at.% Pd
hkl a, aq aq
400 3-884 A 3:907 A 3942 A
331 3-888 3-909 3-943
420 3-888 3-909 3-945
Average 3-887 A 3:908 A 3943 A

Standard deviation 0-001 A

Carefully purified palladium (Terada, 1961; Terada &
Cagle, 1960) and triply-distilled mercury were heated in
sealed, evacuated, Pyrex tubes to prepare the samples.
The value of a, observed for the purified palladium,
3-887 A, is in agreement with the value 3-8898 A reported
by Swanson & Tatge (1953). The data of Table 1 may
be represented analytically by the equation
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Ad =2-16 x 10-3m + 1-93 x 10~4m?( + 0-002 A)

in which 4d is the increase in lattice parameter in A
over that for pure palladium and m is the atomic per-
centage of mercury in the sample.

At concentrations above 13-8 at.% of mercury a phase
PdHg which is body-centered tetragonal (AuCu type, L1,)
with cell parameters a,=3-026 A, ¢,=3-702 A for stoi-
chiometric composition was obtained. This was first
observed by Bittner & Nowotny (1952). It is, however,
identical with the mineral potarite, discussed in detail
elsewhere (Terada, 1960; Terada & Cagle, 1960), which
had been previously described as apparently isometric
(Palache, Berman & Frondel, 1944).
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(Received 8 July 1961)

In a recent paper Kartha & Ahmed (1960) have shown
that in structure-factor calculations an atom with aniso-
tropic thermal movement may be represented by four
atoms of } weight each if the anisotropy is not too large.
For two dimensions, or when the vibration ellipsoid is
an ellipsoid of revolution about the major axis, the
anisotropically vibrating atom need only be split into
two atoms of } weight each. For the two-dimensional
case with AB < 1 A2 the discrepancy between the ‘correct’
exponential representation of the temperature factor and
the suggested approximation was stated to be less than
29% within the limiting sphere for Cu K« radiation. This
discrepancy, however, increases for increasing values of
4B, and soon becomes quite appreciable.

During a recent three-dimensional refinement of the

crystal structure of (PNCl,), (Ketelaar & De Vries, 1939),
it appeared that for some atoms AB values considerably
larger than 1 A2 had to be applied. As only a machine
programme for structure-factor calculations with isotropic
thermal parameters was available, we investigated in
which way K. & A.’s method could be extended. We
found that for atoms with 4B < 1-3 A2 it could be used
satisfactorily in a slightly modified form. The anisotrop-
ically vibrating atoms with larger values of 4B had,
however, each to be split into more than four fractional
parts.

This latter extension of K. & A.’s method, by which
many ‘atoms’ become involved in the structure-factor
calculation, is rather laborious. In general it is advan-
tageous only if no structure-factor programme is available
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which can deal in the conventional way with anisotrop-
ically vibrating atoms; or for a erystal structure for which
an anisotropic calculation is required for one or two atoms
only.

In the following discussion of the modification and the
extension of K. & A.’s method, the symbols from their
paper are used. This discussion is given for two-dimen-
sions first.

In the case of two fractional atoms, the distance Ax
of the fractional atoms from the atomic centre, for which
the best fit to the exponential form of the temperature
factor could be obtained, was determined by trial. With

Az =0-1130(4B,)172 — 0-0069(4B,)¥2 A (1)

the agreement between the temperature factor and its
approximated form was better than 2% for 4B, < 1-3 A2
and & < 1-3 A-1 (cut-off for Cu K« radiation). As already
stated above in K. & A.’s approximation with

Az =0-108(4B,)V2 A

deviations of 2% occur for 4B, =1-0 A2.

If three fractional atoms are used, two parameters
must be chosen. Let the fractions be (1—2p) at (0, 0)
and p at ( + 4z, 0). In the ‘correct’ form for the scattering
in the & direction in reciprocal space,

J (&) =/o(§) exp (- BE?*[4) exp (— AB&%/4) ,

the factor Jfi(€) =exp (— AB,£2[4)

is thus substituted by a factor
fs(&)=1—2p +2p cos 2nédx .

For 1-4 < AB; < 5:0 A2 the best agreement between
these two factors was obtained if Az and p obeyed the
following expressions:

Az =0-0153 +0-1744(AB,)V/2 A (2)
and
p =[0-1923(4B;)~1/2 +2-1916]-2. (3)

The values for dx and p calculated from (2) and (3)
are listed in Table 1 for 4B, =1-4 (0-2) 5-0 A2,

Table 1. Values of Az and p for AB =1-4(0-2)5-0 A2

AB, Ax P AB, Ax P
1-4A2 0-2217A 0-1804 3-2A2 03273 A 0-1892
1-6 0-2359 0-1821 34 0-3369 0-1897
1-8 0-2493 0-1834 36 0-3462 0-1902
2-0 0-2619 0-1846 3-8 0-3553 0-1906
2-2 0-2740 0-1856 4-0 0-3641 0-1911
2-4 0-2855 0-1865 4-2 0-3727 0-1915
2:6 0-2965 0-1873 44 0-3811 0-1918
2'8 0-3071 0-1880 46 03894 0-1921
3-0 0-3174 0-1886 4-8 0-3974 0-1925
50 0-4053 0-1928

By using these values, the approximation of f;(£),
within the limiting sphere for Cu K« radiation, is better
than 2% for values of AB; up to 2-4 A2, For AB, values
between 2-5 and 5-0 A?, the discrepancy between f;(£)
and fs (&) remains smaller than 29, for the & values below

max. = 148 —0-30(4B, —2-0)V2 A-1, i,
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Emax. =127 A-1 for AB,=2-5A% and &max. =006 A-1
for AB; =50 A2. For &> Emax. the discrepancy between
fe(&) and fs (&) increases very rapidly and f;(£) should no
longer be used as an approximation for f;(&).

The general trend of fs(£) in comparison with f; (&) is
shown in Table 2, in which these functions are com-
pared for AB, =3-0 Az,

Table 2. Comparison of fi(£) and fs(&) for AB, =30 A2

3 Je(&)  fs(&) 3 Je(&)  fs(8)
0-:0A-1  1-000 1-000 0-7A-1 0693  0-689
01 0-993  0-993 0-8 0-619 0614
0-2 0-970  0-970 0-9 0-545  0-539
03 0935  0-935 1-0 0-472  0-468
04 0-887  0-886 1-1 0-404  0-403
05 0-829  0-828 1-2 0-340  0-346
06 0-763  0-761 1-3 0-282  0-301

For general anisotropy, K. & A. suggested that the
smallest of B, By, B,, say By, be taken as isotropic
temperature factor B, and that the anisotropically
vibrating atom be replaced by four atoms of } weight
each at (0, +4y, +4z). As for two dimensions, this
approximation is good as long as 4B, and 4B, do not
exceed a value of 1-3 A% when the separations of the
fractional atoms are again calculated according to (1).
For higher anisotropies, however, the atom should be
split into more than four parts. If e.g. B, > B,, the atom
should first be replaced by three fractional atoms in the
z direction, in the same way as for two dimensions. Then
each of these parts in its turn should be split into two
or three parts dependent on the value of 4By. A practical
example for 4B, =3-0 Az, ABy=2‘0 A2, is shown in the
scheme below, in which 4z =0-3174 A and Ay =0-2619 A.

Splitting
2 inz
4 direction
+ .. + ........................ + T
0-0.348 0-1190 0-0348 0-1886
Az
Ay
+ + + y L
0 le50 0-3928 0-1 150 0-6228
+ ..................... + ........................ + —_
0-0348 0-1190 0-0348 0-1886
Splitting — | |
di MY 01846 0-6308 0-1846
irection
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